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ABSTRACT

In large, collaborative, heterogeneous teams, team members
often collect information that is useful to other members
of the team. Recognizing the utility of such information
and delivering it efficiently across a team has been the focus
of much research, with proposed approaches ranging from
flooding to complex filters and matchmakers. Interestingly,
random forwarding of information has been found to be a
surprisingly effective information sharing approach in some
domains. In this paper, we investigate this phenomenon in
detail and show that in certain systems, random forwarding
of information performs almost half as well as a globally op-
timal approach. We present analytic and empirical results
comparing random methods with theoretically optimal shar-
ing in small-worlds, scale-free, and random networks. In ad-
dition, we demonstrate a method for modeling real domains
that allows our results to be applied toward estimating in-
formation sharing performance.
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1. INTRODUCTION

Exciting applications are emerging that involve large, het-
erogeneous teams acting in complex environments. Exam-
ples include search and rescue [5], disaster response [15], and
military applications [4]. In such domains, team members
will often collect local information that is necessary or use-
ful to other members of the team. For example, in urban
search and rescue operations, an aerial robot might be able
to locate a victim, but be unable to assess their condition
or determine a route to them. A ground robot on the team
could perform these tasks, but might be unable to locate the
victim by itself. Efficiently getting such information from
those collecting it to those requiring it is one of the keys
to effective team performance. However, teammates often
have limited information about which, if any, team mem-
bers require particular pieces of information. Thus, the team
member collecting some piece of information needs to deter-
mine whether and where to send collected information with
limited knowledge of who might need it and how important
it is to them. At the same time, team members must also
be careful about what they communicate as the volume of
incoming information is typically dramatically higher than
available communication bandwidth.

In small teams or static environments, a variety of ap-
proaches have been applied to the information sharing prob-
lem. One example, STEAM [16], requires team members to
keep others informed of their current state, allowing mem-
bers to intelligently reason about which teammates need
which information. Approaches using matchmakers [9] al-
low team members to keep some central point informed of
their state, while the control point is responsible for direct-
ing information as required. More recently, for applications
such as sensor networks, algorithms drawing on intuitions of
how human gossip [3] works have been shown to be effective,
but often wasteful with bandwidth. Token-based algorithms
have also been shown to be effective for large-scale team co-
ordination [18] and belief sharing [17] in some domains.

An interesting feature of both gossip and token algorithms
is that little knowledge of the team is known or assumed.
Nearly random communication coupled with local reasoning
is sufficient to produce surprisingly competitive results. It
is this surprising effectiveness of lightweight, decentralized,
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and largely random algorithms that is the focus of this pa-
per. The intention in this work is to understand and quantify
when and how these simple strategies will be effective.

Our first contribution is an upper bound on the average
performance of information sharing in a network. By condi-
tioning the bound by the number of communications used, it
can be generalized to any information sharing approach on
a peer-to-peer network of a given structure and distribution
of utility. Comparing this bound to empirical results, we
find that under certain conditions token-based information
sharing methods can achieve near-optimal performance. We
present a similar derivation for computing expected perfor-
mance of a random information sharing policy.

The second contribution is an empirical comparison of
simple, random token policies against an omniscient token
policy on a highly abstracted information sharing problem.
For many distributions of utility and network types, it is
found that random policies attain a significant portion of
the utility of a policy planned with perfect knowledge. More-
over, random policies incorporating simple heuristics to lo-
cally avoid previously traversed links or nodes are observed

to do substantially better than purely random policies. Adding

noise to the information used by the omniscient policy fur-
ther reduces the gap between the omniscient and random
policies. This suggests that if the cost of maintaining the
knowledge to do intelligent information sharing is high, sim-
ply using a random policy may be a better approach.

The final contribution of this work is a real-world example
of robots sharing a map modeled within a utility distribution
framework. The resulting distribution is applied in simula-
tion, and results are compared with those of the canonical
distributions studied in the previous section. The resulting
analysis predicts that certain network types will yield higher
performance for token-based information sharing methods.

2. INFORMATION SHARING

In this section, we formally describe the information shar-
ing problem. Consider a team of agents, A, working to
achieve some goal. Suppose there is a piece of information
n obtained by team member a € A. If any other member
b € A were to obtain that information, it would impact their
ability to perform the team goal. Define the utility &.(n) as
the quantification of this change in performance. In order
for b to get the information, it must be communicated across
the network, N. This requires some members of the team to
spend resources such as time and power on communicating
the information. Thus, there is some communications cost
k(a,b,m) associated with transmitting n from a to b.

The best team performance is achieved when information
is shared with the set of team members that have a higher
utility for the information than the cost of communicating it
to them. If the communication cost is expressed in the same
units as the utility, this is represented by the maximization:

AT (1)

argglgg(;&(n) — k(- a,m)
In order to address the specific problem of information shar-
ing in a large, dynamic team, we make several key assump-
tions. First, communications are assumed to be peer-to-peer
and of a constant cost per transmission. Rather than rep-
resenting the communications costs of every pair of agents,
k(a,b,m) can be compactly represented as some fixed cost
k when agents are neighbors in the network, and infinite
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when they are not. This is reasonable for domains with
peer-to-peer communications, as transmission between dis-
tant teammates in a network can be decomposed into a se-
quence of transmissions to their intermediate neighbors. The
only solutions that are lost in this decomposition are solu-
tions where teammates forward information along but do
not make use of it, an illogical case for a team.

Given this assumption, it is possible to condition the per-
formance of an information sharing algorithm by the num-
ber of communications it has used. In many domains, the
tradeoff between communication cost and utility is not well
characterized or fixed. Avoiding it allows results to be gen-
eralized by removing the second term from Equation 1 and
allowing us to compare performance across algorithms which
make multiple communications per time step.

Second, while the utility of some information will change
over time, we assume that communication is sufficiently fast
that utility is constant while a single piece of information is
being shared across the network. For example, in a search
and rescue domain, the utility of knowing where a fire is will
change if the fire spreads or team members move relative to
it. However, the speed of these changes is orders of magni-
tude slower than the millisecond scale transmission speeds
of a modern wireless network connecting the team members.

Finally, in a large team, rather than modeling the utility
explicitly for each member, we assume that it can be sum-
marized in a utility distribution over all agents. This distri-
bution represents the probability that a team member a has
some utility £ for a piece of information 7. For a given do-
main, the utility distribution can be computed empirically
by conditioning on relevant variables and sampling utility
as information is shared in the team. For analytic purposes,
we can approximate this distribution by a number of canon-
ical probability distributions such as normal, uniform, and
exponential distributions.

2.1 Token Algorithms

Given these assumptions, we consider two extremes of
token-based algorithm design in addressing this problem. In
these algorithms, a token is created that contains some in-
formation n. This token is atomically passed from teammate
to teammate. When a team member receives the token, it
can make use of the information inside, then decide to either
forward the token to a neighbor or delete it. Since tokens
use exactly one communication per time step, token algo-
rithms can control the number of communications by using
tokens that are deleted after a fixed number of steps.

If we take advantage of all possible knowledge of agent
utility and network properties, the optimal approach is to
directly solve the maximization in Equation 1. This is done
using an exhaustive search of all possible network paths of
length ¢t. We call this a t-step lookahead approach.

On the other hand, if we ignore all available knowledge of
agent utility, we can propose a simple algorithm of randomly
passing information from neighbor to neighbor. This equates
to simply performing a random walk across the network. We
therefore call this the random walk approach.

Given that no knowledge of utility is used in routing a
random walk, its efficiency is primarily determined by its
coverage of the network. We therefore introduce two inter-
mediate algorithms that are equally naive with regards to
utility, but significantly more intelligent about coverage. A
token will maximize coverage if it never revisits the same
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agent in a network. Thus, a straightforward improvement
to the random walk approach is the addition of a history of
nodes carried within the token. As the token moves around
the network, visited agents are marked in this history, and
when the token is being routed, this history is used to ex-
clude visited agents from selection. If all neighbor nodes
are visited, the algorithm selects a link at random. This
approximates a self-avoiding walk over the network, so we
term this the random self-avoiding walk approach.

This approach is reasonable when the size of the history
is expected to be bounded to a reasonable size. However, in
very large teams or systems where tokens visit many agents
of the team, this is not a practical solution. In these cases,
if there are a bounded number of tokens in existence at any
given time time, an alternative solution is to maintain a local
history at each agent for each active token, consisting of its
previously used incoming and outgoing network connections.
Similarly to the random self-avoiding approach, agents that
receive a token multiple times will attempt to send it to
different neighbors each time, selecting randomly from the
outgoing edges if all of them have been previously used. We
designate this the random trail approach.

3. ANALYTIC BOUNDS

Given a utility distribution for a piece of information and
the size of the network, it is possible to compute an upper
bound on the expected value of information sharing for a
fixed number of communications. Consider sharing a piece
of information 7. Under the peer-to-peer communications
assumption, each transmission of 7, regardless of origina-
tor, will send 7 to exactly one team member, a. If we ig-
nore connectivity constraints, then in the optimal case a
has never seen the information before and has the high-
est utility (a = argmaxaca €a(n)) of any member of the
team. Once this member receives the information, however,
&a(n) < 0. Thus, the next communication should ideally
pass information to a member b that has also never seen
the information before and has the highest remaining utility
(b = argmaxaeca\q £a(n)) of any team member for the piece
of information. The optimal sequence of transmission over
the members of the team is to simply go in order by descend-
ing utility. For any specific number ¢ of transmissions, the
optimal path will be the first ¢ members in this sequence.

For the case of simultaneous communications this opti-
mum still holds, as each still incurs a communication cost.
Simultaneous transmissions can be considered to be ordered
arbitrarily, but it is clear that the above sequence will be an
upper bound for any such sequence of transmissions.

Using the utility distribution, this optimal sequence can
be probabilistically modeled as a descent through the order
statistics of the team members. The value of the kth small-
est of n samples from a distribution is defined to be the kth
order statistic of the distribution. If the team size is n, we
assume that the team members constitute n i.i.d. samples
from the utility distribution. Thus, an ideal communication
sequence under full connectivity will, on average, first visit
an agent with a utility corresponding to the expected value
of the nth order statistic of the utility distribution for a sam-
ple size of n, then the (n — 1)th, and so forth, until all team
members have been visited. This sequence, by definition,
will yield the highest possible average utility for any fixed
number of communications.

The expected order statistics for many canonical distri-
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butions of interest are well studied. We review the results
for three common distributions: uniform, normal, and ex-
ponential. For the uniform distribution, the expectation of
the kth order statistic over n samples, Uy.,, follows a Beta
distribution of the form B(k,n + 1 — k), and so it can be
directly solved as the mean of the distribution [1].

k
n—+1

E[Uk..] (2)
While slightly more complex in the general case, the ex-
pectation of the kth order statistic for the standard expo-
nential distribution over n samples, X.,, follows a simple
recurrence relation [1].

S|

E[Xpum) (3)

(4)

The normal distribution does not have a neat closed form
for its expected order statistics. However, a number of high-
precision approximations exist. For this paper, algorithm
AS177 [14] is used to approximate expected order statistics
for the reasonably large (n = 1000) sample sets.

With the expectations of the utility distribution’s order
statistic E[Ok.n] computed, the upper bound B can be gen-
erated using the following sum:

Py {Z 0} -3 rlo)

where Oy is the kth order statistic of the utility distribution.

This bound is tight when the network is fully connected.
Under this condition, it is also possible to model the ex-
pected performance of information sharing via a completely
random walk.

Given a team of size n where we have a set A, of team
members that have already received the token (including the
member that currently has the token). Let |[A,| = u. We
can compute the probability that the token will be sent to
a team member a that has already received the token:

E[Xin]

k
E[Xk-1,n-1]+ —
n

(5)

Pr(a € Ayln,u) = u—l

(6)

We can derive a recurrence that computes the probability
that during the kth step of a random walk, the size of the
visited set will be x:

n—1

Pr(u = z|n, k) = Pr(a € Au|n,z)Pr(u=z|n,k—1)
+Pr(a ¢ Auln,z —1)Pr(u =z —1n,k —1) (7)

When the information is collected locally, we know that al-
ready, one team member must know of it. Thus, we have

Pr(u = 1|Vn,k =0) (8)

Similarly, at any later point, at least one agent must know
of the information.

= 1

Pr(u < 1|Vn,k > 0) 0 (9)

Using this recurrence relation, we can compute the expected
number of distinct team members that will be visited after
k communications of a token as

Efulk] = n (1 - (1 - i)kH)

(10)
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Since each distinct team member is independently sampled
from the utility distribution, this leads to the expected per-
formance of a random walk on a complete network.

E[U|k,n] = Elutility for single agent] - E[u|k,n]
1\ A+
= FElutility for single agent|n [ 1 — (1 — 7>
n
Expected performance can similarly be computed for other % \o 200 300 400 500 % 100 0 00 400 500
networks and utility distributions, provided that agents can (a) Small worlds (b) Scale-free

be considered to be sampled independently and the expec-
tation E[u|k,n] can be computed.

4. EXPERIMENTAL RESULTS

A highly abstracted information sharing token simulator
was created to empirically test the performance of token-
based information sharing methods. The simulation consists

. . - 0 0
of a network of agents that are assigned utilities for a given o 10 20 a0 40 50 6 100 20 a0 40 500
piece of information from a specified distribution. A token Number of Communications Number of Communications
representing that information is initialized at a randomly (c) Lattice (d) Hierarchical

chosen agent within the network. The agents propagate the
token around the network according to some routing policy,

1-step —+— 8-step

2-step — — — Upper Bound
and the accumulated utility is recorded at each step until e astep
the simulation executes some fixed number of steps. Results
are averaged over 5 runs. Figure 1: Optimality of n-step lookahead over four network
Five canonical network types were examined: small-worlds, types with a normal utility distribution (1 = 0.5,0 = 0.2).
scale-free, hierarchical, lattice, and random. Each was gen- The utility obtained by each token is plotted against the
erated to contain 1000 nodes with an average degree of 4. number of communications used.
The small-worlds network was generated by adding random
links to a doubly-connected ring. The scale-free network was
generated using a tunable variant of the Barabasi-Albert
algorithm [10]. The hierarchical network was formed by the lookahead policy was varied over the four network types
adding nodes evenly to a balanced tree. The lattice was with a normal utility distribution (x = 0.5,0 = 0.2), and
a four-connected 2D grid with wraparound, and the random the utilities of the resulting communication paths computed.
network was created by adding random links until the aver- The results of these tests can be seen in Figure 1, where the
age degree was reached. In most cases, results for random utility obtained by each token is plotted against the num-
networks were analogous to those of scale-free networks, thus ber of communications the token was allowed. As lookahead
most results for random networks were omitted for brevity. depth increases, the obtained utility converges asymptoti-
Three canonical distributions were examined: uniform, cally to the optimal. Interestingly, while lookahead depths
normal, and exponential. The uniform distribution was over of 1, 4 and 8 converge toward an asymptote, 2-step looka-
the interval [0,1]. The exponential distribution had a rate heads, denoted by the circle symbols, appear to perform
parameter of A = 1.0, but was scaled by a factor of 0.2. In pathologically poorly. It is possible that this is due to a
the case of the normal distribution, the mean and variance negative interaction between the width of the networks and
of the distribution were sometimes altered for various trials, the depth of the search pattern, where the lookahead policy
but the nominal parameters were = 0.5, ¢ = 0.2. may consistently make myopic routing decisions. From these
Four information sharing methods were considered: opti- results, a lookahead policy with a depth of 4 was selected as
mal, random walk, random trails, and self-avoiding walks. a baseline for future experiments, as a compromise between
The optimal policy was approximated using a finite looka- computational complexity and optimality of performance.
head policy with global knowledge. Every m-steps, an ex- It is also possible to evaluate the optimality of token-based
haustive search of paths of length m was executed to deter- lookahead policies against the upper bound established in
mine an optimal path. This path was executed fully, fol- the previous section. The dashed lines in in Figure 1 cor-
lowed by another m-step planning phase. Ideally, this stage respond to these bounds. Two key characteristics are im-
would consist of a single path search of the final path length, mediately evident. First, the lookahead policies often con-
but computing this path is extremely expensive due to the verge very closely to the upper bound on performance, sug-
non-Markovian nature of the utility function (as agents are gesting that in the ideal case, token routing methods can
visited, their utility drops to zero, so the joint distribution perform very close to optimal. Second, while the bound is
of utility is always dependent on complete network state). independent of network structure, clear differences are visi-
Instead, smaller values of m were chosen empirically from ble in the optimality of the lookahead policy over different
the results of early experiments. network types. Most notably, in Figure 1d, the hierarchi-
. . . cal network performs much worse than the upper bound,
4.1 Optlmahty of the Lookahead POhcy suggesting that information propagation via tokens in this
In order to determine a sufficient approximation of opti- type of structure is either highly inefficient or requires an
mality, an experiment was conducted in which the depth of extremely deep lookahead depth.
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Figure 2: Performance of random and lookahead policies
over four network types with a normal utility distribution
(p = 0.5,0 = 0.2). The utility obtained by each token is
plotted against the number of communications used.

4.2 Optimality of the Random Policies

The four information sharing methods were tested in nor-
mal and exponential distributions. Figures 2 and 3 show
the results of these experiments. It is evident that perfor-
mance is heavily influenced by network type, with all poli-
cies performing significantly worse in hierarchical networks
with both distributions and random policies performing pro-
portionally much worse in the small worlds and hierarchical
networks (Figures 2d and 3d). Random policies perform
best in the scale-free and lattice networks, with purely ran-
dom walks attaining almost half the utility of the lookahead
policy in the scale-free network with a normal utility distri-
bution. The addition of self-avoiding heuristics appears to
improve random policy performance significantly, primarily
in the lattice and scale-free networks. The similar perfor-
mance of the random trail and self-avoiding walk policies
suggests that they are comparably effective at avoiding pre-
viously visited agents when covering the network. Further
experiments focused on the random trail policy, as it typified
the performance of the heuristic random policies.

As an example of the surprisingly efficient performance of
random policies, consider Figure 2b. In it, we find that a
utility of 175 is attained by a lookahead policy using an aver-
age of 300 communications. The same utility is obtained by
a random self-avoiding policy in 425 communications. How-
ever, the random self-avoiding policy has no computational
or structural overhead as it is completely unaware of util-
ity. This suggests that under these conditions, if the cost of
maintaining the necessary knowledge to perform an optimal
strategy is on par with the cost of the extra 125 communica-
tions, a randomized policy is in fact a competitive strategy
for information sharing.
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Figure 3: Performance of random and lookahead policies
over four network types with an exponential utility distri-
bution (A = 1.0, scale factor of 0.2). The utility obtained by
each token is plotted against the number of communications
used.

4.3 Effects of Noisy Estimation

Exploring this tradeoff further, we examine the effects of
noisy estimates of utility on performance of the lookahead
policy. Gaussian noise was introduced into the utility es-
timates of unvisited team members used by the lookahead
policy. The utility of visited members was fixed at zero and
not affected by this noise. To simulate the compounded in-
accuracy of estimating the utility of team members further
away in the network, the standard deviation (o) of the noise
was scaled exponentially by the network distance between
teammates (dq,) using the following equation.

Oap = (041.0)%t—-1.0 (11)

s

As seen in Figure 4, as the amount of noise was increased,
the performance of the lookahead policies degraded. This
suggests that even when using an ideal routing policy, in-
correct estimates of utility can disrupt intelligent routing
policies. However, at ¢ = 1.0, the noise was so large that
estimates of utility were approximately random. The only
usable information available in this condition was that the
utility of visited teammates was fixed at zero. Without the
ability to discern high- and low-utility team members, the
remaining difference in performance between the lookahead
and random policy in the high noise condition cannot be at-
tributed to the selection of higher utility paths. However, it
may be the result of the lookahead policy’s ability to avoid
myopic routing decisions that might force future communi-
cations to pass through visited teammates.

4.4 Properties Affecting Optimality

Another observation was that the proportional gap be-
tween the lookahead policy and the random trail policy var-
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Figure 4: Effects of noise on lookahead and random trail
policy over four network types with a normal utility distri-
bution (u = 0.5,0 varied). The utility obtained by each
token is plotted against a noise scaling parameter .

ied repeatably over networks and utility distributions across
trials, suggesting that a combination of network structure
and utility distribution properties affect the efficiency of the
random trail policy. To explore this further, a wide array of
networks and utility distributions were tested across a con-
stant number of communications of ¢ = 250 to study how the
optimality of the random trail policy was affected by various
properties. A cross section of these results can be found in
Figures 5 and 6. It was found that certain characteristics
clearly affected optimality, while most had negligible effects.

The type of network had a clear impact on optimality.
Interestingly, small worlds and hierarchical networks were
similar in performance and contrasted with scale-free net-
works. In this experiment, particularly interesting results
were obtained for random networks, so these results are pre-
sented in lieu of the grid results.

The network density was another property that showed
a clear effect on optimality. At low network densities (p =
2), the average case performance of the random trail algo-
rithm matched or exceeded the optimal policy on the small
worlds and random networks. The consistency of this re-
sult, and its specificity, suggest that certain combinations of
network structure, utility distribution, and network density
are pathological for the lookahead policy. At higher densi-
ties, the optimality seemed to converge to a constant value
dependent on network type.

Aside from inconsistent behavior at low network densi-
ties, the variance of the utility distribution also affected op-
timality, with the random trail policy performing better as
variance was decreased. This makes sense, as a perfect self-
avoiding policy over a network of members with constant
utility (no variance) will always take an optimal path.

4.5 Scaling Properties

The performance of the lookahead and random trail poli-
cies was tested under the normal and exponential utility
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Figure 5: Effects of network density on optimality of random
trail policy over four network types with a normal (u =
0.5,0 = 0.2), exponential (A = 1.0, scale factor of 0.2), and
uniform utility distribution. The proportion of lookahead
utility refers to the utility of the random trail policy scaled
by that of a 4-step lookahead policy.

distributions as the networks were scaled between 500 and
6500 nodes. As seen Figure 7, performance of both random
and lookahead policies was scale-invariant over this range.
This suggests that previous results, obtained for 1000 node
networks, should scale to much larger team sizes. As the
complexity of maintaining accurate knowledge of the team
increases with team size, it also suggests that in practice ran-
dom policies may be more competitive in larger networks.

S. MODELING SPECIFIC DOMAINS

While the previous experimental results are applied to
canonical distributions, we can also extend the analysis to
more realistic domains. As a practical example, we con-
sider the case of two robots exploring a randomly generated
maze-like obstacle field, represented as a 2D cost map. The
robots are capable of exchanging their locally-sensed maps.
Suppose we have one mobile robot a at some location on the
map. It has been randomly assigned a goal somewhere on
the map, and its objective is to move to this location via a
path of minimum cost by making a series of steps to neigh-
boring map cells. The robot is capable of sensing the cost of
map cells within a small Euclidean distance around it, but
it has no knowledge of the cost of cells outside of its sensory
range. Using the D* lite algorithm [8], the robot can plan
a path to the goal and traverse it, recomputing its path as
new obstacles are sensed. The path it generates will often be
less than optimal, as it will sometimes explore routes that
lead to dead ends or circuitous paths.

Now, suppose a second robot, b, is located on the map as
well. b is a stationary robot, but has an extended sensing
range. It has the option of sending the costs it can locally
sense to robot a. In some cases, this may help a avoid explor-
ing an area needlessly. We define the utility of this informa-
tion to be the change in a’s traversal cost with and without
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Figure 6: Effects of variance on optimality of random trail
policy over four network types with a normal utility distri-
bution (4 = 0.5,0 varied) and varying network densities.
The proportion of lookahead utility refers to the utility of
the random trail policy scaled by that of a 4-step lookahead
policy.

the additional information from b. If we assume this activ-
ity is taking place on a very large scale, we can empirically
compute the distribution of utility over many random place-
ments of a, a’s goal, and b to get a probabilistic estimate of
the utility of an information update.

For the case where the grid is 200 x 200, the sensing ra-
dius of a is 5 cells, and the sensing radius of b is 20 cells,
the distribution of 40,000 samples can be seen in Figure 8.
The distribution is roughly exponential, as most updates
cover areas outside of the regions of interest or do not give
a much novel information. Some updates do significantly
decrease the traversal cost for a, and these are the ones that
potentially should be propagated by an intelligent informa-
tion sharing algorithm. Interestingly, there are also updates
with negative utility, which occur when b sends an update
that encourages a to explore a dead end that it would not
have explored otherwise. If additional information about a
were available, a more precise utility distribution could be
formed by conditioning on this information.

Once we have the utility distribution computed, we can
sample from it in the simulation to estimate the large-scale
performance of the various policies. The results in Figure 9
are consistent with the results in the exponential distribu-
tion in Figure 3. From these graphs, we can estimate the
optimality of the heuristic random policies at various com-
munications limits and over various networks.

6. RELATED WORK

The problem of communication in teams has been well-
studied in a variety of fields. Approaches such as STEAM [16]
and matchmakers [9] share knowledge about information re-
quirements in order to reason about where to direct informa-
tion. Gossip algorithms [3] and token passing algorithms [18,
17] use randomized local policies to share information and
are thus particularly suited to large scale problems. To ad-

827

e */,,
> > O
£ 100 £ 100
=] =]
=~ %
50 — sof .
-—
0 0
) 2000 4000 6000 ) 2000 4000 6000
Network Size Network Size
(a) Small worlds (b) Scale-free
200 200
B
sof T 150
z z
E 100} s £ 100
=] =]
—_—
50 50
R e SV
0 0
) 2000 4000 6000 0 2000 4000 6000

Network Size

(d) Hierarchical

Network Size

(c) Lattice

RandomTrails, Normal —— Lookahead, Normal
RandomTrails, Exponential ——+— Lookahead, Exponential

Figure 7: Effects of scale on performance of random trail and
lookahead policies over four network types with a normal
(n = 0.5,0 = 0.2), and exponential (A = 1.0, scale factor
of 0.2) utility distribution. Performance of both random
and lookahead policies appears scale-invariant over networks
ranging from 500 to 6500 nodes.

dress the expense of synchronizing beliefs over teams, sev-
eral techniques have been developed in conjunction with de-
centralized Bayesian filtering techniques, including channel
managers [2] and query-based particle filters [12].

A number of approaches to communication for multi-agent
coordination have evolved around the concept of multi-agent
POMDPs. Some approaches augment the decentralized prob-
lem with actions for synchronization [11], while others model
communications as an explicit choice and seek to maximize
the tradeoff between communication cost and reward [19, 6]
to achieve goals such as minimizing coordination errors [13].

7. CONCLUSIONS AND FUTURE WORK

In this paper, we establish an upper bound on average case
performance of information sharing in large teams and show
that in certain circumstances random policies can achieve a
significant portion of that performance. By adding simple
heuristics to avoid redundant communications, it is possi-
ble to improve the performance of a purely random policy
significantly. This means that in domains where network
and utility distributions are similar to these cases, random
information sharing policies may present an efficient and ro-
bust information sharing solution. Furthermore, this perfor-
mance is scale-invariant, making these policies particularly
well suited to large team environments.

Overall random policies were found perform relatively poorly
on small-worlds networks, while performing well on scale-
free and lattice networks. In addition, hierarchical networks
were shown to be ill-suited to even optimal token-based in-
formation sharing algorithms. Similar results were obtained
for the maze navigation domain, demonstrating that real-
world domains can also be modeled through utility distribu-
tions, allowing them to be analyzed on large scales.
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Figure 8: Utility in the maze navigation domain. A static
and mobile robot capable of sensing local obstacles are
placed in a randomly generated map (a). The utility of
the stationary robot’s information (b) is defined as the dif-
ference in the mobile robot’s path cost when traveling to a
goal while using the stationary robot’s information versus
traveling without it.

In future work, we will apply these results to a variety
of physical domains, including urban search and rescue and
mobile mesh networking. Using these analysis methods, it
should be possible to determine which information sharing
methods are best suited to these domains, including if and
when random policies should be used. In addition, by mod-
eling the utility distributions of these domains, it may be
possible to gain insight into the fundamental properties of
real-world information sharing problems, in turn improv-
ing the information sharing algorithms that must address
them. Further graph-theoretic and probabilistic analysis
should yield tighter bounds on performance, and additional
experiments can determine the optimality of other common
information sharing algorithms such as classic flooding [7],
gossiping [3], and channel filtering [2].
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